首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   7篇
测绘学   2篇
大气科学   2篇
地球物理   45篇
地质学   26篇
海洋学   20篇
天文学   4篇
综合类   2篇
自然地理   13篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   7篇
  2009年   10篇
  2008年   8篇
  2007年   11篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有114条查询结果,搜索用时 31 毫秒
91.
In the Ariake Sea, dike construction in Isahaya Bay in 1997 for reclamation and disaster prevention was thought to cause big anthropogenic impacts on the marine ecosystem. Currently, hypoxia or anoxia occurs every summer in Isahaya Bay and the inner Ariake Sea. However, the effects of the dike construction on the DO concentration are unclarified. The present study evaluated the impact of the dike construction on the DO concentration by applying a numerical ecosystem model. The present calculation showed that the dike construction could affect the DO concentration in summer in a wider area than reported before in the steady state with a neap-spring tidal cycle. In Isahaya Bay, the dike construction caused a decrease of DO concentration greater than 2.0 mg l?1 , due to the decrease in DO supply from the  vertical diffusion process with reduction of tidal current and the intensification of the density stratification. The dike construction also affected the DO concentration in the inner Ariake Sea by decreasing the DO concentration of the water transported by the estuarine circulation and the reduction of the diffusive supply of oxygen vertically with stratification enhanced by the dike construction. For the first time, this study showed with numerical simulation that the dike construction could affect the DO concentration in a wide area of the Ariake Sea.  相似文献   
92.
Understanding rainfall‐runoff processes is crucial for prevention and prediction of water‐related natural disasters. Sulfur hexafluoride (SF6) is a potential tracer, but few researches have applied it for rainfall‐runoff process studies. We observed multiple tracers including SF6 in spring water at 1‐ to 2‐hr intervals during rainstorm events to investigate the effectivity of SF6 tracer in rainfall–runoff studies through the clarification of rainfall–runoff process. The target spring is a perennial spring in a forested headwater catchment with an area of 0.045 km2 in Fukushima, Japan. The relationship between the SF6 concentration in spring water and the spring discharge volume was negative trend; the SF6 concentration in spring water becomes low as the spring discharge volume increases especially during rainstorms. The hydrograph separation using SF6 and chloride ion tracers was applied for determining the contribution of principal sources on rainfall–runoff water. It suggested more than 60% contribution of bedrock groundwater at the rainfall peak and high percentage contribution continued even in the hydrograph recession phase. Based on observed low SF6 concentration in groundwater after heavy rainfall, the replacement of groundwater near the spring with bedrock groundwater is indicated as a mechanism for water discharge with low SF6 concentration during rainfall events. Consequently, rainstorm events play an important role as triggers in discharging water stored in the deeper subsurface area. In addition, SF6 tracer is concluded as one of the strongest tracers for examining rainfall–runoff process studies. And, therefore, this study provided new insights into the dynamics of groundwater and its responses to rainfall in terms of SF6 concentration variance in water in headwater regions.  相似文献   
93.
94.
Recent studies have suggested the importance of the bedrock groundwater (BG) contribution in storm runoff in headwater catchments. However, few such studies have been conducted, and the study of different types of bedrock conditions is still ongoing. The role of BG in storm runoff is still poorly understood, particularly in headwater catchments underlain by relatively deep fractured bedrock. This study aims to clarify this role using hydrometric and hydrochemical observations of BG via boreholes and catchment discharge. The responses of the BG to rainfall are demonstrated to be fast and independent of the sediment cover. The BG exhibits different responses and flow paths that are largely controlled by the bedrock fracture system. The storm runoff in the studied catchment is characterized by rapid discharge response generally followed by a delayed discharge response. The peak of the delayed discharge is much faster than that observed in previous studies, and it is well correlated with the BG levels. A hydrograph separation was performed for two storm events using three end members: rainfall, shallow BG and deep BG. The results demonstrate that the delayed discharge is primarily composed of deep BG. Moreover, a significant contribution of shallow BG is observed during large precipitation events. Although we observed no physical evidence of direct contributions of BG in the catchment, the calculations presented in this study demonstrate that the BG controls the hydrological and hydrogeological response of the catchment to rainfall events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
95.
Profiles of nonylphenol isomers in surface waters from Sri Lanka   总被引:1,自引:0,他引:1  
Isomer-specific concentrations of nonylphenol (NP) and their predicted estrogenic potency were investigated in Sri Lankan waters for the first time. The total concentration of 13 NP isomers ranged from 90 to 1835 ng/L, while the predicted estrogenic equivalent concentration ranged from 0.072 to 1.38 ng 17β-estradiol (E2)/L. Bire Lake, located in the central area of the commercial capital, Colombo, had the highest contamination among the studied locations. These data show that NP levels in Sri Lankan waters are well within the recently reported concentrations in other regions of the world. The spatial differences in NP concentrations suggest that NP contamination in Sri Lanka may be widespread, and comprehensive study is vital.  相似文献   
96.
The superconducting gravimeter (SG) has a long-period instrumental noise called the parasitic mode at periods around 100 s, whose precise mechanism has not yet been identified. In this paper, another instrumental noise is detected at much higher frequencies by analyzing the high-rate gravity channel of two SGs in Japan. This is also a parasitic oscillation, characterized by frequencies on the order of 1 Hz and very high Q values. Detailed spectra indicate that the noise actually consists of two modes with small frequency separations. Based on a simple theory on the rotational motions of the superconducting sphere in the gravity sensor, the observed modes are tentatively identified as rotational oscillations of the sphere about two orthogonal axes in the horizontal plane. Interactions between the parasitic modes are investigated using the spectra acquired on an earthquake, to conclude that the low-frequency parasitic mode is likely to be a rotational motion of the sphere about the vertical axis.  相似文献   
97.
Explosive volcanic eruptions can cause long-term landscape change, leading to increased sediment discharge that continues after the cessation of the eruptions. During the period 1990–1995, eruptions of Mount Unzen, Japan, generated large amounts of pyroclastic material, resulting in 57 debris-flow events during 1991–2018. To investigate changes in the relationships between rainfall characteristics and debris-flow occurrence, we conducted the following: geometric analysis of two gullies (i.e., debris-flow initiation zones) using LiDAR (light detection and ranging)-generated 1 m DEMs (digital elevation models); rainfall analysis, based on the relationship between rainfall duration and mean intensity (i.e., considering the intensity–duration, or ID, threshold); and debris-flow monitoring during 2016–2018. Since 1991, rainfall runoff has caused erosion of the supplied pyroclastic material, generating a channel network consisting of incised gullies. With sufficient rainfall, debris flows formed, accompanied by further gully erosion; this resulted in both vertical and lateral adjustments of the cross-sectional geometry. In the two decades since the eruptions ceased, readily mobilized pyroclastic material has become scarce as the gullies have adjusted to local hydrographic conditions. At the same time, the infiltration capacity of the volcanic flank has increased, reducing the capacity for overland flow. As a result, since 2000, rainfall events with intensities above the ID threshold have occurred; however, the lack of sediment supplied by the gullies appears to have hindered the occurrence and development of debris flows. This suggests that debris flows in volcanically perturbed landscapes may occur at lower rainfall thresholds as long as the corresponding upland channels are evolving as a result of intense overland flow. However, as such channels evolve towards equilibrium geometries, the frequency of debris flows decreases in response to the reduction in sediment availability.  相似文献   
98.
Absolute gravity values were measured with a portable absolute gravimeter A10 in East Antarctica, for the first time by the Japanese Antarctic Research Expedition. This study aims to investigate regional spatiotemporal variations of ice mass distributions and associated crustal deformations around Syowa Station by means of repeated absolute gravity measurements, and we obtained the first absolute gravity value in Southern Langhovde on the Antarctic Continent. The average absolute gravity value at the newly installed benchmark AGS01 in Langhovde (obtained on 3 February 2012) was 982535584.2 ± 0.7 μgal (1 [μgal] = 1 × 10?8 [m/s2]), which was in agreement with the gravity values obtained by the past relative gravity measurements within 1 mgal. In addition, the average absolute gravity value obtained at AGSaux in Syowa Station was consistent with both previous absolute gravity values and those obtained by simultaneous measurements using an FG5 gravimeter, owing to adequate data corrections associated with tidal effects and time variations in atomic clock frequencies. In order to detect the gravity changes associated with the ice mass changes and other tectonic phenomena, we plan to conduct absolute gravity measurements at AGS01 again and at other campaign sites around Syowa Station as well in the near future, with careful attention paid to the impacts of severe environmental conditions in Antarctica on gravity data collection.  相似文献   
99.
The assembly of the crystalline basement of the western Barents Sea is related to the Caledonian orogeny during the Silurian. However, the development southeast of Svalbard is not well understood, as conventional seismic reflection data does not provide reliable mapping below the Permian sequence. A wide-angle seismic survey from 1998, conducted with ocean bottom seismometers in the northwestern Barents Sea, provides data that enables the identification and mapping of the depths to crystalline basement and Moho by ray tracing and inversion. The four profiles modeled show pre-Permian basins and highs with a configuration distinct from later Mesozoic structural elements. Several strong reflections from within the crystalline crust indicate an inhomogeneous basement terrain. Refractions from the top of the basement together with reflections from the Moho constrain the basement velocity to increase from 6.3 km s−1 at the top to 6.6 km s−1 at the base of the crust. On two profiles, the Moho deepens locally into root structures, which are associated with high top mantle velocities of 8.5 km s−1. Combined P- and S-wave data indicate a mixed sand/clay/carbonate lithology for the sedimentary section, and a predominantly felsic to intermediate crystalline crust. In general, the top basement and Moho surfaces exhibit poor correlation with the observed gravity field, and the gravity models required high-density bodies in the basement and upper mantle to account for the positive gravity anomalies in the area. Comparisons with the Ural suture zone suggest that the Barents Sea data may be interpreted in terms of a proto-Caledonian subduction zone dipping to the southeast, with a crustal root representing remnant of the continental collision, and high mantle velocities and densities representing eclogitized oceanic crust. High-density bodies within the crystalline crust may be accreted island arc or oceanic terrain. The mapped trend of the suture resembles a previously published model of the Caledonian orogeny. This model postulates a separate branch extending into central parts of the Barents Sea coupled with the northerly trending Svalbard Caledonides, and a microcontinent consisting of Svalbard and northern parts of the Barents Sea independent of Laurentia and Baltica at the time. Later, compressional faulting within the suture zone apparently formed the Sentralbanken High.  相似文献   
100.
Cementitious materials used for radioactive waste repository construction complicate the performance assessment of radioactive waste systems because the use of cement may greatly alter the pH (8–13) of groundwater and release constituents such as calcium ions. Under such conditions, it is important to clarify also the dynamic behavior of silica (silicic acid), in order to evaluate the alteration in the chemical and physical properties of the fractured layer or the host rock surrounding the repository. Since silica undergoes polymerization, precipitation or dissolution depending on the pH and/or temperature, the behavior of silica would be greatly complicated in the presence of other ions. This study is focused on the deposition rates of polysilicic acid and soluble silicic acid with up to 10−3 M Ca ions. In the experiment, Na2SiO3 solution (250 mL, pH > 10, 298 K) was poured into a polyethylene vessel containing amorphous silica powder (0.5 g), and a buffer solution, HNO3, and CaNO3 as Ca ions were sequentially added into the vessel. The pH of the solution was set to 8. The silica, initially in a soluble form at pH > 10 (1.4 × 10−2 M), became supersaturated and either deposited on the solid surface or changed into the polymeric form. Then the concentrations of both poly- and soluble silicic acid were monitored over a 40-day period. The decrease of polysilicic acid became slow with an increase in the concentration of Ca ions in the range of up to 10−3 M. In general, the addition of electrolytes to a supersaturated solution accelerates the aggregation and precipitation of polymeric species. However, the experimental result showed that polysilicic acid in the presence of Ca ions is apparently stable in solution, compared with that under a Ca-free condition. On the other hand, the concentration of soluble silicic acid in the presence of Ca ions immediately became metastable, that is, slightly higher than the solubility of soluble silicic acid. Its dynamic behavior was similar to that in the Ca-free condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号